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Abstract
Much is still unknown about the long-term effects of repeated, sub-lethal exposure to organophosphorus (OP) nerve agents, such as soman

(GD), on learning and memory tasks and related protein expression in the hippocampus. In the present study, guinea pigs were exposed to sub-lethal

doses of GD for 10 days and cognitive performance assessed using the Morris water maze (MWM) up to 88 days post-exposure to investigate

spatial learning. Additionally, hippocampal lysates were probed for cytoskeletal, synaptic and glutamate receptor proteins using Western blot

analyses. No significant difference in MWM performance was observed between repeated sub-lethal GD exposed and saline control groups.

However, Western blot analyses revealed significant changes in glutamate receptor protein immunoreactivity for subunits GluR2, NMDAR1,

NMDAR2a and NMDAR2b in the hippocampi of GD-exposed guinea pigs. Levels of GluR2, NMDAR2a and NMDAR2b increased by 3 months

post-initial exposure and returned to control levels by 6 months while NMDAR1 decreased by 6 months. No significant differences in

neurofilament medium (NFM), neurofilament light (NFL) or synaptophysin densitometry were detected and a-II-spectrin proteolytic breakdown

was also absent. These results reveal that repeated, sub-lethal exposure to GD affects glutamate receptor subunit expression but does not affect

cytoskeletal protein immunoreactivity or the proteolytic state in the hippocampus. Though these changes do not affect spatial memory, they may

contribute to other cognitive deficits previously observed following sub-lethal OP exposure.

Published by Elsevier Inc.

Keywords: Soman; GD; NMDA receptor; AMPA receptor; Glutamate; Morris water maze; Sub-lethal; Spatial memory; GluR2; NMDAR1; NMDAR2a;

NMDAR2b
1. Introduction

Soman (pinacolyl methylphosphonofluoridate, GD) is a

potent organophosphorous compound (OP) that irreversibly
Abbreviations: GD, soman; XGD, dilute soman; MWM, variable start

anterograde Morris water maze paradigm; GluR, glutamate receptor; AMPA,

alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid; NMDAR, N-

methyl-D-aspartic acid glutamate receptor; NFM, neurofilament medium;

NFL, neurofilament light; PIE, post-initial exposure; AChE, acetylcholinester-

ase.
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binds to acetylcholinesterase (AChE) in both the peripheral

and central nervous systems. At lethal doses, accumulation of

acetylcholine rapidly leads to seizures, respiratory failure and

death. Survivors of acute, sub-lethal doses can experience

long-term health and psychological effects (Kawana et al.,

2001; McCauley et al., 2001; Ohtani et al., 2004; Kawada

et al., 2005). However, past events have shown that most

people, especially emergency and medical treatment person-

nel, exposed during a mass nerve agent incident receive an

initial mild or asymptomatic level of exposure (single,

multiple or extended) as opposed to an acute symptomatic

exposure (Levin and Rodnitzky, 1976; Morita et al., 1995;

Gray et al., 1999).

mailto:erik.a.johnson1@us.army.mil
http://dx.doi.org/10.1016/j.neuro.2007.09.002
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Previous studies have revealed changes in the brain

following sub-lethal nerve agent exposure (Burchfiel et al.,

1976; Duffy et al., 1979) that involve not only the acetylcholine

system, but also the glutamate system (Shih et al., 1990;

Lallement et al., 1991, 1992, 1994b; Sparenborg et al., 1992;

McDonough and Shih, 1993; de Groot et al., 2001). Excitotoxic

injury caused by increased levels of glutamate has repeatedly

been shown to cause cognitive dysfunction (Phillips et al.,

1998; O’Dell et al., 2000; Faden et al., 2001). Interestingly,

studies show changes in the brain following sub-lethal nerve

agent exposure that lead to memory and attention deficits that

normally involve the hippocampus (Hatta et al., 1996;

Nishiwaki et al., 2001; Miyaki et al., 2005).

The role of the hippocampus in complex visuo-spatial

learning and memory has been well established. The high

concentrations of N-methyl-D-aspartate glutamate (NMDA)

and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) glutamate receptors, which play a key role in

hippocampal-mediated learning and memory (Izquierdo and

Medina, 1997), also make the hippocampus highly vulnerable

to glutamate-induced excitotoxic injury from GD poisoning

(Shih et al., 1990; Lallement et al., 1991, 1992, 1994b;

Sparenborg et al., 1992; McDonough and Shih, 1993; de Groot

et al., 2001). Repeated sub-lethal exposure to OP compounds

can raise extracellular glutamate levels in the brain (Singh and

Drewes, 1987) and increased glutamate availability can alter

glutamate receptor expression (Piehl et al., 1995; Kreutz et al.,

1998; Cebers et al., 2001). Additionally, perturbations in

NMDA receptor subunit distribution on the neuronal cell

surface (Hardingham et al., 2002) or a rearrangement in the

ratio of NMDA subunits in individual receptors can change the

overall physiology of the receptor and the functionality of the

hippocampus (Cebers et al., 1999). Many models of cognitive

dysfunction have shown altered glutamate receptor expression

(Luthi-Carter et al., 2003; Mishizen-Eberz et al., 2004) and

NMDA subunit ratio rearrangement (Mikuni et al., 1998)

suggesting that these mechanisms may also contribute to

cognitive dysfunction following sub-lethal GD exposure.

Altered cytoskeletal structural protein [e.g., microtubule

associated protein 2 (MAP2), neurofilaments (NF), a-II-

spectrin] immunoreactivity has been correlated with adverse

behavioral effects following CNS injury (Pike et al., 1998;

Isaksson et al., 2001; Shaw et al., 2005; Briones et al., 2006;

Bruschettini et al., 2006) and distinct losses of MAP2 have been

shown in the hippocampus following acute GD exposure

(Ballough et al., 1995). Though altered expression of these

structural proteins alone does not suffice as evidence for altered

inter-neuron communication (Huh et al., 2003), in conjunction

with markers of synaptic architecture (e.g., synaptophysin),

these markers can be a good indicator of maladaptive plasticity

and altered inter-neuron communication (Phillips et al., 1994;

D’Ambrosio et al., 1998).

The present study investigated the effects of repeated sub-

lethal GD exposure on anterograde visuo-spatial learning and

memory and correlated those results to cytoskeletal, synaptic

and glutamate receptor protein alterations in the hippocampus.

The guinea pig model was used for these studies due to
carboxyesterase (CaE) levels and turnover rates for the guinea

pig more closely mimic humans than those for either rats or

mice (Atchison et al., 2004). Guinea pigs were exposed to

multiple, sub-lethal doses of GD (0.4 � LD50) and assessed up

to 88 days post-initial injection using the Morris water maze to

study long-term learning and memory deficits. The hippo-

campus of each animal was then probed for altered cytoskeletal,

synaptic and glutamate receptor protein expression using

Western blot analyses to correlate protein changes with any

observed behavioral deficits.

2. Materials and methods

2.1. Animals

Ten-week-old diet restricted male Hartley guinea pigs (Crl:

(HA)BR) (Charles River Laboratories, Wilmington, MA)

weighing approximately 460 g were used for the behavioral

and biochemical sections of this study. The pathophysiology of

GD exposure varies depending on weight and fitness (Sipos

et al., 2002) and diet control is a simple procedure to detect GD

exposure effects in long-term guinea pig studies (Nold et al.,

2001). Therefore, these animals were diet controlled rather than

free-fed and sedentary as a better correlate to the lifestyles of

active military and emergency personnel (Sipos et al., 2002).

Animals were fed 60 mg/kg of Harlan Teklad guinea pig diet

once daily following GD exposure and MWM trials. Each

animal was implanted with an IPTTTM-300 transponder chip

(Bio Medic Data Systems, Seaford, DE) for identification

purposes and to record body temperature. Temperatures and

weights were recorded twice daily just prior to morning GD

exposure and afternoon MWM trials. Data were collected post-

initial exposure (PIE) and designated as immediate (7–11 days

PIE), 1 month (14–28 days PIE), 3 months (84–88 days PIE)

and 6 months (154 days PIE). The research environment and

protocols for animal experimentation were approved by the

institutional animal care and use committee (IACUC) and

complies with the National Institutes of Health Guide for Care

and Use of Laboratory Animals (Publication No. 85-23, revised

1985). The animal care program at this Institute is fully

accredited by the Association for Assessment and Accredita-

tion of Laboratory Animal Care International.

2.2. Soman administration

GD (GD-U-2323-CTF-N, purity 98.8 wt%) was obtained

and diluted at the US Army Medical Research Institute of

Chemical Defense (USAMRICD, Aberdeen Proving Ground,

MD). The highest sub-lethal dose of soman (XGD; 11.2 mg/kg

or 0.4 � LD50) that does not produce acute toxic signs

following a single injection (Atchison et al., 2004) was

administered subcutaneously in the scruff of neck once a day

(MON-FRI) for 10 exposures at 1.0 mL/kg per injection. Signs

of GD toxicity were measured twice daily, in the morning

within 30 min of exposure and in the afternoon within 30 min

of the last MWM trial. Weight and temperature along with

either the presence or absence of lacrimation, salivation,
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fasciculations and hyperactivity were measured. No animals

died as the result of GD exposure.

2.3. Morris water maze (MWM) visuo-spatial complex

learning and memory task

The variable start Morris water maze (MWM) anterograde

memory task has successfully and reliably measured cognitive

impairment in other models of CNS injury (Hamm et al., 1992),

including repeated mild excitotoxic brain injury (DeFord et al.,

2002). Guinea pigs were trained on the variable start

anterograde MWM paradigm with external maze cues (Morris

et al., 1982) with modification: a 15 cm platform replaced the

10 cm platform to accommodate the guinea pig (de Groot et al.,

2001). Briefly, a light colored fiberglass pool with a 160 cm

diameter and a height of 60 cm was located in a 2.4 m � 2.1 m

room. The tank was refilled daily with 25 8C water to a height of

50 cm to optimize the observance of visual cues for the guinea

pig. Extra-maze cues were positioned around the pool and

remained constant throughout the experiment. The guinea pigs

were trained to locate the clear plexiglass platform submerged

2 cm below the water surface and further obscured by non-toxic

white Tempera paint. For each trial, the guinea pig was placed

facing the wall of the pool in one of the four pool quadrants. The

pool quadrant was determined randomly for each day and

separately for each animal. Each trial began with the guinea pig

being placed in the pool and ended when the animal climbed on

the platform. The maximum duration allowed was 120 s. For

each session, the animal was marked with a large black ink dot

on its back for video tracking purposes. Each animal was

tracked using a Panasonic BP334 Digital video camera and data

were recorded and analyzed using WatermazeTM version 2.6

software (Coulbourn Instruments; Allentown, PA). If the

platform was not found after 120 s, the animal was placed

directly on the platform for 15 s. At the end of each trial, the

animal was toweled dry and placed in a transfer cage with a

heating lamp. Assessment of MWM performance consisted of

four trials per day (2–5 min inter-trial interval) for 5

consecutive days. Animals were assessed at 3-week-long time

points (7–11, 14–18 and 84–88 days PIE). At each week-long

time point, the platform was randomly placed in a new

quadrant. Trial duration (s), total path distance (cm), and swim

speed (cm/s) were recorded for analysis. The number of

animals used for each trial was n = 20 (days 7–11, 14–18) and

n = 10 (days 84–88). Data were evaluated by repeated measures

ANOVA analysis with significance set at p � 0.05.

2.4. Western blot analyses

Western blot analyses of hippocampal tissue lysates were

conducted as previously described (Johnson et al., 2004).

Briefly, guinea pigs were deeply anesthetized using a lethal

dose of pentobarbital, hippocampus tissues were rapidly

excised, frozen in liquid nitrogen and stored at �80 8C. The

tissue was homogenized in ice-cold triple detergent lysis buffer

containing a CompleteTM protease inhibitor cocktail (Roche

Biochemicals; Indianapolis, IN) using a motorized pestle
(Caframo; Wairton, ONT) and Tissue Tearer (Biospec; Racine,

WI) on ice. Protein concentration was determined using

bicinchoninic acid (BCA) micro protein assays (Pierce, Inc.;

Rockford, IL). Forty micrograms of protein were loaded per

well and separated by SDS-PAGE, transferred to polyvinyli-

dene difluoride membranes and probed with a primary antibody

for either NFM (Encor Biotechnology; Alachua, FL), NFL

(Encor Biotechnology; Alachua, FL), synaptophysin (Sigma–

Aldrich; St. Louis, MO), a-II-spectrin (Biomol International;

Plymouth Meeting, PA), NMDAR2a (Sigma–Aldrich; St.

Louis, MO), NMDAR2b (Sigma–Aldrich; St. Louis, MO),

GluR2/3 (Chemicon; Temecula, CA) or GluR3 (Chemicon;

Temecula, CA). Actin (Sigma–Aldrich; St. Louis, MO) was

labeled as a loading control. The membranes were then

thoroughly rinsed in Tris-buffered saline with Tween 20,

incubated with anti-rabbit (Sigma–Aldrich; St. Louis, MO) or

anti-mouse (Zymed/Invitrogen; Carlsbad, CA) alkaline phos-

phatase-conjugated secondary antibody and developed using

Enhanced Chemifluorescence reagents (ECF, Amersham;

Arlington Heights, IL). The membranes were then imaged

using the STORM 860 phosphorimager/fluorimager (Molecu-

lar Dynamics; GE Healthcare, Piscataway, NJ). Saline controls,

experimental groups (1, 3 and 6 months PIE) and naı̈ve control

(unexposed) groups each had an n = 6. Transformed data

(exposed or saline densitometry value/naı̈ve control densito-

metry value � 100) were evaluated by ANOVA and a post-hoc

Bonferroni-test for selected pairs (i.e., saline v GD for each

time point) was applied. Values are expressed as percentage of

naive controls and are given as the mean � S.D. Differences

were considered significant at the level of p � 0.05.

3. Results

3.1. Physiological measurements

Guinea pigs were injected for 10 days (MON-FRI for 2

weeks) with either saline or 0.4 � LD50 GD. Changes in body

mass from the first to the last exposure (10 day mass change)

was significantly different between the sub-lethal GD and

saline-treated groups (saline: +32.2 g versus GD: +19.5 g,

p < 0.05). Total average body temperature readings were also

significantly different between the two groups (saline:

101.1 � 1.6 8C versus GD: 102.0 � 0.8 8C, p � 0.001) though

tolerance was not observed (XGD day 1 versus XGD day 12,

data not shown). Lacrimation was absent in both groups. Excess

salivation, fasciculations and hyperactivity were absent in the

saline group but appeared sporadically, though not on

consecutive measurements, in the GD group. Out of 200 total

observations for the GD group, only 5% were marked as

hyperactive, 14.5% as fasciculating and 2% as having signs of

excess salivation.

3.2. Learning and memory

To determine whether repeated sub-lethal GD administra-

tion affected visuo-spatial complex learning and memory,

guinea pigs were assessed using the MWM task as described



Fig. 1. No learning and memory deficits were detected in GD-exposed guinea

pigs using the MWM task. No significant differences were observed between

saline-treated and GD-treated group in latency times at any post-initial exposure

(PIE) time. Additionally, no differences were observed for distance traveled and

average velocity using a one-way ANOVA analysis (not shown). Each data point

represents the average trials per day (20 trials per time point per animal,) for

each group from an n = 20 (days 7–18) or n = 10 (days 84–88). Values are

reported as mean + S.D.

Fig. 2. NMDAR2a densitometry is significantly increased following repeated

sub-lethal GD exposure. (A) Representative western blots of NMDAR2a

(170 kDa) in hippocampus revealed an increase in NMDAR2a immunoreac-

tivity following repeated sub-lethal GD exposure compared to saline treatment.

(B) Densitometric analysis of the NMDAR2a band showed significant increases

(*p < 0.05) at 3 months post-initial exposure (PIE). Actin (43 kDa) was used as

a loading control. Data are given as percent of the naive controls; each time

point represents data from an n = 6 and is reported as mean � S.D.

Fig. 3. NMDAR2b densitometry is significantly increased following repeated

sub-lethal GD exposure. (A) Representative western blots of NMDAR2b

(180 kDa) in hippocampus revealed an increase in NMDAR2b immunoreac-

tivity following repeated sub-lethal GD exposure compared to saline treatment.

(B) Densitometric analysis of the NMDAR2b band in hippocampus shows

significant increases (*p < 0.05) at 3 months post-initial exposure (PIE). Actin

(43 kDa) was used as a loading control. Data are given as percent of the naive

controls; each time point represents data from an n = 6 and is reported as

mean � S.D.
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above. Repeated measures ANOVA revealed no significant

differences at any MWM time point between the saline group

and the GD-treated group in latency (Fig. 1), total path distance

or swim speed (data not shown).

3.3. Cytoskeletal and synaptic protein immunoreactivity

To determine whether repeated sub-lethal GD administra-

tion led to changes in neurocytoskeletal integrity, densitometric

values from Western blots were observed for NFM, NFL, full-

length a-II-spectrin and synaptophysin. No significant changes

were observed in the hippocampus of the GD-exposed group

for any structural protein compared to saline controls at any

time point. Similarly, the cytoskeletal protein actin revealed no

significant changes in the hippocampus confirming its use as a

consistent loading control.

We also observed no significant differences in the

immunoreactivity of a-II-spectrin proteolytic breakdown

products, indicative of cell death pathway activation (Pike

et al., 1998), at 150 kDa (calpain and caspase-3), 145 kDa

(calpain-specific) or 120 kDa (caspase-3-specific) at any time

point (data not shown).

3.4. Glutamate receptor immunoreactivity

To determine whether repeated sub-lethal GD administra-

tion affected NMDA or AMPA glutamate receptor immunor-

eactivity, Western blot analyses were performed on

hippocampal lysates for NMDAR2a, NMDAR2b, NMDAR1,

GluR2/3 and GluR3. Densitometric analyses of the NMDAR2a

and NMDAR2b subunits revealed significantly greater immu-

noreactivity of both subunits in the GD-exposed group

compared to saline controls in the hippocampus at 3 months

PIE ( p � 0.05; for both NMDAR2a and b) and representing an
increase from saline controls of 28 and 32%, respectively

(Figs. 2 and 3). Analysis of the NMDAR1 subunit revealed a

significant decrease in immunoreactivity in the GD-exposed

group compared to the saline group by 6 months PIE ( p � 0.01)

representing a reduction of 75% from saline controls (Fig. 4).

For AMPA receptors, antibodies for GluR2/3 (which

recognizes both GluR2 and GluR3) and GluR3 were used.

Densitometric analyses for GluR3 revealed no significant



Fig. 4. NMDAR1 densitometry is decreased increased following repeated sub-

lethal GD exposure. (A) Representative western blots of NMDAR1 (116 kDa)

in hippocampus revealed a decrease in NMDAR1 immunoreactivity following

repeated sub-lethal GD exposure compared to saline treatment. (B) Densito-

metric analysis of the NMDAR1 band showed significant decreases

(**p < 0.01) at 6 months post-initial exposure (PIE) compared to saline treat-

ment. Actin (43 kDa) was used as a loading control. Data are given as percent of

the naive controls; each time point represents data from an n = 6 and is reported

as mean � S.D.

Fig. 5. GluR2 densitometry is significantly decreased following repeated sub-

lethal GD exposure. (A) Representative western blots of GluR2/3 (�106 kDa)

in hippocampus obtained from repeated sub-lethal GD-treated and saline-

treated guinea pigs revealed a decrease in GluR2/3 immunoreactivity following

repeated sub-lethal GD exposure compared to saline treatment. (B) Densito-

metric analysis of the GluR2/3 bands in hippocampus shows significant

decreases (**p < 0.01) at 3 months post-initial exposure (PIE) thought to be

due to decreases in GluR2 alone as analysis of GluR3 alone showed no

significant changes (not shown). Actin (43 kDa) was used as a loading control.

Data are given as percent of the naive controls; each time point represents data

from an n = 6 and is reported as mean � S.D.
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difference between the GD-exposed and saline-treated groups

(data not shown). However, there was a significant decrease in

GluR2/3 immunoreactivity in the hippocampal lysates of the

GD-treated group at 3 months PIE ( p � 0.01) representing a

decrease from saline controls of 43% (Fig. 5). This, taken with

the GluR3 data, suggests a decrease in GluR2 immunoreactivity.

4. Discussion

The present study investigated visuo-spatial memory and

cytoskeleton, synaptic membrane and glutamate receptor

subunit immunoreactivity in the hippocampus of guinea pigs

exposed to repeated sub-lethal doses of GD. This GD-dosing

regime revealed significant changes in glutamate receptor

immunoreactivity despite no observation of significant changes

in visuo-spatial memory or immunoreactivity of structural and

synaptic proteins in the hippocampus.

This GD dosing paradigm has been shown to significantly

reduce red blood cell (RBC) AChE levels to 9% of controls at

the end of 2 weeks of exposure. However, RBC and diaphragm

AChE activity significantly recover by 3 days following the last

GD exposure (Atchison et al., 2004) which suggests any long-

term changes observed are not likely due to continued AChE

inhibition. Following repeated, sub-lethal exposures to GD, no

statistical difference was observed for latency, swim speed or

total path distance between GD-exposed and saline-treated

groups in the MWM task despite the successful use of this

model by other groups (de Groot et al., 2001; Filliat et al., 2002;

Byrnes et al., 2004; Iqbal et al., 2004). These results are

consistent with previous work showing no long-term behavioral

effects for schedule-controlled behavior (Hymowitz et al.,
1990), conditioned avoidance response and passive avoidance

tasks following repeated, sub-lethal GD-exposure (Russell

et al., 1986). Additionally, MWM performance following

repeated sub-lethal exposure to the OP compound, methami-

dophos, revealed no learning impairments (Temerowski and

van der Staay, 2005). However, the dosing paradigm itself may

preclude our ability to detect behavioral changes due to OP

compound tolerance following repeated administrations (Rus-

sell et al., 1986; Hymowitz et al., 1990).

Previous studies of repeated sub-lethal GD exposures have

demonstrated pathological and electroencephalographic

changes following GD exposure in the absence of behavioral

changes (Burchfiel et al., 1976; Duffy et al., 1979; Hymowitz

et al., 1990). To determine whether the current GD dosing

paradigm led to cytoskeletal and synaptic protein alterations,

suggestive of neuronal dysfunction or damage, we investigated

long-term protein changes in the hippocampus up to 6 months

PIE by examining the expression patterns of three neuron-

specific cytoskeletal proteins; NFM, NFL and a-II-spectrin as

well as the synaptic vesicle protein synaptophysin. No

significant changes in NFL, NFM, full-length a-II-spectrin

or synaptophysin immunoreactivity were detected suggesting

that the neuronal cyto-architecture remained unaltered.

Additionally, no significant changes in the caspase-3 or calpain

generated breakdown products of a-II-spectrin were observed

indicating that cell death pathways were not activated in

agreement with previous work (Churchill et al., 1985;

Lallement et al., 1994a; Baille et al., 2001; Carpentier et al.,
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2001; Thomson et al., 2005). However, cell death is not

necessary for the manifestation of cognitive deficits (Lyeth

et al., 1990). Altered immunoreactivity of other proteins,

such as glutamate receptors, may also produce cognitive

dysfunction.

Both the AMPA- and NMDA-type glutamate receptors play

an integral role in learning and memory function as well as OP-

induced neural pathology. Specifically, AMPA-type glutamate

receptor (GluR) activation is implicated in hippocampal hyper-

excitability observed following GD exposure (Sheardown et al.,

1990; Lallement et al., 1991; Wood and Tattersall, 2001).

Densitometry revealed a significant long-term but transient

decrease in GluR2 immunoreactivity in GD exposed animals at

3 months that disappeared by 6 months PIE. The increases in

GluR2 levels in the saline control group at 3 months PIE may be

reflective of normal developmental changes in glutamate

receptor distribution as the animals aged from 10 to 35 weeks, a

phenomenon that may be suppressed in XGD exposed animals.

Though GluR2 immunoreactivity normally decreases in the

hippocampus with age (Gazzaley et al., 1996), larger decreases

are seen in Alzheimer’s disease (Hof et al., 2002), as with our

model, and other neurodegenerative disorders including

amyotrophic lateral sclerosis, epilepsy and brain ischemia

(Pellegrini-Giampietro et al., 1997; Weiss and Sensi, 2000;

Carter et al., 2004; Soundarapandian et al., 2005; Peng et al.,

2006; Tortarolo et al., 2006). This suggests that repeated, sub-

lethal exposure to GD may render subjects more vulnerable to

cognitive dysfunction development especially by exposure to

otherwise benign excitotoxic insults (Pellegrini-Giampietro

et al., 1997; Munirathinam and Bahr, 2004). These data suggest

a transient pathological role for decreasing GluR2 subunit

expression in response to repeated sub-lethal GD-exposure

though this role is not well defined by this study and requires

further investigation.

NMDA-type glutamate receptors, especially in the hippo-

campus, are integral to learning and memory but are also

involved in pathological processes following acute OP

poisoning (Churchill et al., 1985; Lallement et al., 1991;

McDonough and Shih, 1997). A typical NMDA receptor is a

tetramer comprised of a ratio of NMDAR2 subunits, which

contribute to the functionality of the receptor, and the main

obligatory subunit, NMDAR1 (Wafford et al., 1993; Chazot and

Stephenson, 1997; Luo et al., 1997) with each complex having

its own distinct pharmacological properties. Significant

increases in NMDAR2a and b subunit immunoreactivity

occurred in the hippocampus at 3 months PIE but returned

to saline-control levels by 6 months PIE. Conversely,

NMDAR1 immunoreactivity was comparable between the

GD-exposed and saline-treated groups at 3 months but

significantly declined by 6 months PIE in the GD-exposed

group. This observation may reflect a redistribution of

NMDAR2 subunit ratios in response to the increased

availability of glutamate in an attempt to maintain the

functional homeostasis of the glutamate system at 3 months

PIE (Cebers et al., 1999). As an example, increases in

NMDAR2a and b can occur in the hippocampus as the result of

excitotoxic injury (Sutcu et al., 2005). By 6 months PIE, these
subunit ratio alterations may have been functionally insuffi-

cient, and in response, the expression of the entire receptor

complex (as evidenced by NMDAR1) is likely down-regulated

(Cebers et al., 2001).

The ramifications of altered NMDAR subunit distribution

following GD exposure are numerous. Increases in NMDAR2a

and b subunit expression have been linked to aberrant

hippocampal mossy fiber sprouting and epiliptogenesis

(Mathern et al., 1996; Mikuni et al., 1998, 1999) and can

make NMDAR-expressing neurons particularly vulnerable to

excitotoxic insults (Kotapka et al., 1991; Hamm et al., 1993;

Back et al., 2004; Mattson et al., 2005). Additionally, decreases

in NMDA1 receptors can lead to deficits in areas such as

associative memory recall (Nakazawa et al., 2002) and short to

long-term memory conversion (Shimizu et al., 2000). Inter-

estingly, spatial memory may be a more resilient cognitive

faculty as decreases in hippocampal NMDAR1 expression by

as much as 30% do not induce spatial memory deficits

measurable by the MWM (Inada et al., 2003). Though this level

of decreased immunoreactivity was exceeded at 6 months PIE

when compared to saline controls (�75%), it was not if

compared to naı̈ve controls (�10%). This may have contributed

to our failure to detect behavioral changes, though the

successful use of this model by others and the significant

reduction of AChE by our dosing regime that produced similar

reductions in NMDAR1 indicate otherwise.

In conclusion, the Morris water maze did not detect

complex visuo-spatial learning and anterograde memory

deficits following repeated sub-lethal 0.4 � LD50 GD expo-

sures in guinea pigs. Additionally, Western blot analyses of

neuronal cytoskeletal and synaptic membrane proteins

revealed no abnormalities in the cyto-architecture or the

presence of pathological proteolysis. Results demonstrate that

repeated sub-lethal GD-related leads to alteration of both

AMPA and NMDA glutamate receptor protein expression

within the hippocampus up to 6 months PIE. Though altered

expression of glutamate receptor protein has been linked to

cognitive dysfunction, the ramifications of these changes

following repeated sub-lethal GD exposure require further

investigation.
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